0-1 背包问题
对于一组不同重量、不可分割的物品,我们需要选择一些装入背包,在满足背包最大重量限制的前提下,背包中物品总重量的最大值是多少呢?
关于这个问题,回溯的解决方法是穷举搜索所有可能的装法,然后找出满足条件的最大值。不过,回溯算法的复杂度比较高,是指数级别的。那有没有什么规律,可以有效降低时间复杂度呢?我们一起来看看。
// 回溯算法实现。注意:我把输入的变量都定义成了成员变量。
private int maxW = Integer.MIN_VALUE; // 结果放到 maxW 中
private int[] weight = {2,2,4,6,3}; // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw) { // 调用 f(0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cw > maxW) maxW = cw;
return;
}
f(i+1, cw); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw + weight[i]); // 选择装第 i 个物品
}
}
假设背包的最大承载重量是 9。我们有 5 个不同的物品,每个物品的重量分别是 2,2,4,6,3。如果我们把这个例子的回溯求解过程,用递归树画出来,就是下面这个样子:
递归树中的每个节点表示一种状态,我们用(i, cw)来表示。其中,i 表示将要决策第几个物品是否装入背包,cw 表示当前背包中物品的总重量。比如,(2,2)表示我们将要决策第 2 个物品是否装入背包,在决策前,背包中物品的总重量是 2。
从递归树中,你应该能会发现,有些子问题的求解是重复的,比如图中 f(2, 2) 和 f(3,4) 都被重复计算了两次。记录已经计算好的 f(i, cw),当再次计算到重复的 f(i, cw) 的时候,可以直接从备忘录中取出来用,就不用再递归计算了,这样就可以避免冗余计算。
private int maxW = Integer.MIN_VALUE; // 结果放到 maxW 中
private int[] weight = {2,2,4,6,3}; // 物品重量
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
private boolean[][] mem = new boolean[5][10]; // 备忘录,默认值 false
public void f(int i, int cw) { // 调用 f(0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cw > maxW) maxW = cw;
return;
}
if (mem[i][cw]) return; // 重复状态
mem[i][cw] = true; // 记录 (i, cw) 这个状态
f(i+1, cw); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw + weight[i]); // 选择装第 i 个物品
}
}
这种解决方法非常好。实际上,它已经跟动态规划的执行效率基本上没有差别。但是,多一种方法就多一种解决思路,我们现在来看看动态规划是怎么做的。
我们把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个物品决策(放入或者不放入背包)完之后,背包中的物品的重量会有多种情况,也就是说,会达到多种不同的状态,对应到递归树中,就是有很多不同的节点。
我们把每一层重复的状态(节点)合并,只记录不同的状态,然后基于上一层的状态集合,来推导下一层的状态集合。我们可以通过合并每一层重复的状态,这样就保证每一层不同状态的个数都不会超过 w 个(w 表示背包的承载重量),也就是例子中的 9。于是,我们就成功避免了每层状态个数的指数级增长。
我们用一个二维数组 states[n][w+1],来记录每层可以达到的不同状态。
第 0 个(下标从 0 开始编号)物品的重量是 2,要么装入背包,要么不装入背包,决策完之后,会对应背包的两种状态,背包中物品的总重量是 0 或者 2。我们用 states[0][0]=true 和 states[0][2]=true 来表示这两种状态。
第 1 个物品的重量也是 2,基于之前的背包状态,在这个物品决策完之后,不同的状态有 3 个,背包中物品总重量分别是 0(0+0),2(0+2 or 2+0),4(2+2)。我们用 states[1][0]=true,states[1][2]=true,states[1][4]=true 来表示这三种状态。
以此类推,直到考察完所有的物品后,整个 states 状态数组就都计算好了。我把整个计算的过程画了出来,你可以看看。图中 0 表示 false,1 表示 true。我们只需要在最后一层,找一个值为 true 的最接近 w(这里是 9)的值,就是背包中物品总重量的最大值。
weight: 物品重量,n: 物品个数,w: 背包可承载重量
public int knapsack(int[] weight, int n, int w) {
boolean[][] states = new boolean[n][w+1]; // 默认值 false
states[0][0] = true; // 第一行的数据要特殊处理,可以利用哨兵优化
states[0][weight[0]] = true;
for (int i = 1; i < n; ++i) { // 动态规划状态转移
for (int j = 0; j <= w; ++j) {// 不把第 i 个物品放入背包
if (states[i-1][j] == true) states[i][j] = states[i-1][j];
}
for (int j = 0; j <= w-weight[i]; ++j) {// 把第 i 个物品放入背包
if (states[i-1][j]==true) states[i][j+weight[i]] = true;
}
}
for (int i = w; i >= 0; --i) { // 输出结果
if (states[n-1][i] == true) return i;
}
return 0;
}
实际上,这就是一种用动态规划解决问题的思路。我们把问题分解为多个阶段,每个阶段对应一个决策。我们记录每一个阶段可达的状态集合(去掉重复的),然后通过当前阶段的状态集合,来推导下一个阶段的状态集合,动态地往前推进。这也是动态规划这个名字的由来,你可以自己体会一下,是不是还挺形象的?
用回溯算法解决这个问题的时间复杂度 O(2^n),是指数级的。那动态规划解决方案的时间复杂度是多少呢?
这个代码的时间复杂度非常好分析,耗时最多的部分就是代码中的两层 for 循环,所以时间复杂度是 O(n*w)。n 表示物品个数,w 表示背包可以承载的总重量。
从理论上讲,指数级的时间复杂度肯定要比 O(n*w) 高很多,但是为了让你有更加深刻的感受,我来举一个例子给你比较一下。
我们假设有 10000 个物品,重量分布在 1 到 15000 之间,背包可以承载的总重量是 30000。如果我们用回溯算法解决,用具体的数值表示出时间复杂度,就是 2^10000,这是一个相当大的一个数字。如果我们用动态规划解决,用具体的数值表示出时间复杂度,就是 10000*30000。虽然看起来也很大,但是和 2^10000 比起来,要小太多了。
尽管动态规划的执行效率比较高,但是就刚刚的代码实现来说,我们需要额外申请一个 n 乘以 w+1 的二维数组,对空间的消耗比较多。所以,有时候,我们会说,动态规划是一种空间换时间的解决思路。你可能要问了,有什么办法可以降低空间消耗吗?
实际上,我们只需要一个大小为 w+1 的一维数组就可以解决这个问题。动态规划状态转移的过程,都可以基于这个一维数组来操作。具体的代码实现我贴在这里,你可以仔细看下。
public static int knapsack2(int[] items, int n, int w) {
boolean[] states = new boolean[w+1]; // 默认值 false
states[0] = true; // 第一行的数据要特殊处理,可以利用哨兵优化
states[items[0]] = true;
for (int i = 1; i < n; ++i) { // 动态规划
for (int j = w-items[i]; j >= 0; --j) {// 把第 i 个物品放入背包
if (states[j]==true) states[j+items[i]] = true;
}
}
for (int i = w; i >= 0; --i) { // 输出结果
if (states[i] == true) return i;
}
return 0;
}
特别强调一下代码中的第 6 行,j 需要从大到小来处理。如果我们按照 j 从小到大处理的话,会出现 for 循环重复计算的问题。
0-1 背包问题升级版
我们继续升级难度。我改造了一下刚刚的背包问题。你看这个问题又该如何用动态规划解决?
我们刚刚讲的背包问题,只涉及背包重量和物品重量。我们现在引入物品价值这一变量。对于一组不同重量、不同价值、不可分割的物品,我们选择将某些物品装入背包,在满足背包最大重量限制的前提下,背包中可装入物品的总价值最大是多少呢?
这个问题依旧可以用回溯算法来解决。
private int maxV = Integer.MIN_VALUE; // 结果放到 maxV 中
private int[] items = {2,2,4,6,3}; // 物品的重量
private int[] value = {3,4,8,9,6}; // 物品的价值
private int n = 5; // 物品个数
private int w = 9; // 背包承受的最大重量
public void f(int i, int cw, int cv) { // 调用 f(0, 0, 0)
if (cw == w || i == n) { // cw==w 表示装满了,i==n 表示物品都考察完了
if (cv > maxV) maxV = cv;
return;
}
f(i+1, cw, cv); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i+1,cw+weight[i], cv+value[i]); // 选择装第 i 个物品
}
}
针对上面的代码,我们还是照例画出递归树。在递归树中,每个节点表示一个状态。现在我们需要 3 个变量(i, cw, cv)来表示一个状态。其中,i 表示即将要决策第 i 个物品是否装入背包,cw 表示当前背包中物品的总重量,cv 表示当前背包中物品的总价值。
我们发现,在递归树中,有几个节点的 i 和 cw 是完全相同的,比如 f(2,2,4) 和 f(2,2,3)。在背包中物品总重量一样的情况下,f(2,2,4) 这种状态对应的物品总价值更大,我们可以舍弃 f(2,2,3) 这种状态,只需要沿着 f(2,2,4) 这条决策路线继续往下决策就可以。
也就是说,对于 (i, cw) 相同的不同状态,那我们只需要保留 cv 值最大的那个,继续递归处理,其他状态不予考虑。
我们还是把整个求解过程分为 n 个阶段,每个阶段会决策一个物品是否放到背包中。每个阶段决策完之后,背包中的物品的总重量以及总价值,会有多种情况,也就是会达到多种不同的状态。
我们用一个二维数组 states[n][w+1],来记录每层可以达到的不同状态。不过这里数组存储的值不再是 boolean 类型的了,而是当前状态对应的最大总价值。我们把每一层中 (i, cw) 重复的状态(节点)合并,只记录 cv 值最大的那个状态,然后基于这些状态来推导下一层的状态。
public static int knapsack3(int[] weight, int[] value, int n, int w) {
int[][] states = new int[n][w+1];
for (int i = 0; i < n; ++i) { // 初始化 states
for (int j = 0; j < w+1; ++j) {
states[i][j] = -1;
}
}
states[0][0] = 0;
states[0][weight[0]] = value[0];
for (int i = 1; i < n; ++i) { // 动态规划,状态转移
for (int j = 0; j <= w; ++j) { // 不选择第 i 个物品
if (states[i-1][j] >= 0) states[i][j] = states[i-1][j];
}
for (int j = 0; j <= w-weight[i]; ++j) { // 选择第 i 个物品
if (states[i-1][j] >= 0) {
int v = states[i-1][j] + value[i];
if (v > states[i][j+weight[i]]) {
states[i][j+weight[i]] = v;
}
}
}
}
// 找出最大值
int maxvalue = -1;
for (int j = 0; j <= w; ++j) {
if (states[n-1][j] > maxvalue) maxvalue = states[n-1][j];
}
return maxvalue;
}
时间复杂度是 O(n*w),空间复杂度也是 O(n*w)。
淘宝的“双十一”购物节有各种促销活动,比如“满 200 元减 50 元”。假设你女朋友的购物车中有 n 个(n>100)想买的商品,她希望从里面选几个,在凑够满减条件的前提下,让选出来的商品价格总和最大程度地接近满减条件(200 元)
它跟第一个例子中讲的 0-1 背包问题很像,只不过是把“重量”换成了“价格”而已。购物车中有 n 个商品。我们针对每个商品都决策是否购买。每次决策之后,对应不同的状态集合。我们还是用一个二维数组 states[n][x],来记录每次决策之后所有可达的状态。不过,这里的 x 值是多少呢?
0-1 背包问题中,我们找的是小于等于 w 的最大值,x 就是背包的最大承载重量 w+1。对于这个问题来说,我们要找的是大于等于 200(满减条件)的值中最小的,所以就不能设置为 200 加 1 了。就这个实际的问题而言,如果要购买的物品的总价格超过 200 太多,比如 1000那这个羊毛“薅”得就没有太大意义了。所以,我们可以限定 x 值为 1001。
不过,这个问题不仅要求大于等于 200 的总价格中的最小的,我们还要找出这个最小总价格对应都要购买哪些商品。实际上,我们可以利用 states 数组,倒推出这个被选择的商品序列。
// items 商品价格,n 商品个数, w 表示满减条件,比如 200
public static void double11advance(int[] items, int n, int w) {
boolean[][] states = new boolean[n][3*w+1];// 超过 3 倍就没有薅羊毛的价值了
states[0][0] = true; // 第一行的数据要特殊处理
states[0][items[0]] = true;
for (int i = 1; i < n; ++i) { // 动态规划
for (int j = 0; j <= 3*w; ++j) {// 不购买第 i 个商品
if (states[i-1][j] == true) states[i][j] = states[i-1][j];
}
for (int j = 0; j <= 3*w-items[i]; ++j) {// 购买第 i 个商品
if (states[i-1][j]==true) states[i][j+items[i]] = true;
}
}
int j;
for (j = w; j < 3*w+1; ++j) {
if (states[n-1][j] == true) break; // 输出结果大于等于 w 的最小值
}
if (j == 3*w+1) return; // 没有可行解
for (int i = n-1; i >= 1; --i) { // i 表示二维数组中的行,j 表示列
if(j-items[i] >= 0 && states[i-1][j-items[i]] == true) {
System.out.print(items[i] + " "); // 购买这个商品
j = j - items[i];
} // else 没有购买这个商品,j 不变。
}
if (j != 0) System.out.print(items[0]);
}
代码的前半部分跟 0-1 背包问题没有什么不同,我们着重看后半部分,看它是如何打印出选择购买哪些商品的。
状态 (i, j) 只有可能从 (i-1, j) 或者 (i-1, j-value[i]) 两个状态推导过来。所以,我们就检查这两个状态是否是可达的,也就是 states[i-1][j] 或者 states[i-1][j-value[i]] 是否是 true。
如果 states[i-1][j] 可达,就说明我们没有选择购买第 i 个商品,如果 states[i-1][j-value[i]] 可达,那就说明我们选择了购买第 i 个商品。我们从中选择一个可达的状态(如果两个都可达,就随意选择一个),然后,继续迭代地考察其他商品是否有选择购买。
如何量化两个字符串的相似度?
有一个非常著名的量化方法,那就是编辑距离(Edit Distance)。
顾名思义,编辑距离指的就是,将一个字符串转化成另一个字符串,需要的最少编辑操作次数(比如增加一个字符、删除一个字符、替换一个字符)。编辑距离越大,说明两个字符串的相似程度越小;相反,编辑距离就越小,说明两个字符串的相似程度越大。对于两个完全相同的字符串来说,编辑距离就是 0。
根据所包含的编辑操作种类的不同,编辑距离有多种不同的计算方式,比较著名的有莱文斯坦距离(Levenshtein distance)和最长公共子串长度(Longest common substring length)。其中,莱文斯坦距离允许增加、删除、替换字符这三个编辑操作,最长公共子串长度只允许增加、删除字符这两个编辑操作。
而且,莱文斯坦距离和最长公共子串长度,从两个截然相反的角度,分析字符串的相似程度。莱文斯坦距离的大小,表示两个字符串差异的大小;而最长公共子串的大小,表示两个字符串相似程度的大小。
关于这两个计算方法,我举个例子给你说明一下。这里面,两个字符串 mitcmu 和 mtacnu 的莱文斯坦距离是 3,最长公共子串长度是 4。
了解了编辑距离的概念之后,我们来看,如何快速计算两个字符串之间的编辑距离?
如何编程计算莱文斯坦距离?
之前我反复强调过,思考过程比结论更重要,所以,我现在就给你展示一下,解决这个问题,我的完整的思考过程。
这个问题是求把一个字符串变成另一个字符串,需要的最少编辑次数。整个求解过程,涉及多个决策阶段,我们需要依次考察一个字符串中的每个字符,跟另一个字符串中的字符是否匹配,匹配的话如何处理,不匹配的话又如何处理。所以,这个问题符合多阶段决策最优解模型。
贪心、回溯、动态规划可以解决的问题,都可以抽象成这样一个模型。要解决这个问题,我们可以先看一看,用最简单的回溯算法,该如何来解决。
回溯是一个递归处理的过程。如果 a[i] 与 b[j] 匹配,我们递归考察 a[i+1] 和 b[j+1]。如果 a[i] 与 b[j] 不匹配,那我们有多种处理方式可选:
可以删除 a[i],然后递归考察 a[i+1] 和 b[j];
可以删除 b[j],然后递归考察 a[i] 和 b[j+1];
可以在 a[i] 前面添加一个跟 b[j] 相同的字符,然后递归考察 a[i] 和 b[j+1];
可以在 b[j] 前面添加一个跟 a[i] 相同的字符,然后递归考察 a[i+1] 和 b[j];
可以将 a[i] 替换成 b[j],或者将 b[j] 替换成 a[i],然后递归考察 a[i+1] 和 b[j+1]。
我们将上面的回溯算法的处理思路,翻译成代码,就是下面这个样子:
private char[] a = "mitcmu".toCharArray();
private char[] b = "mtacnu".toCharArray();
private int n = 6;
private int m = 6;
private int minDist = Integer.MAX_VALUE; // 存储结果
// 调用方式 lwstBT(0, 0, 0);
public lwstBT(int i, int j, int edist) {
if (i == n || j == m) {
if (i < n) edist += (n-i);
if (j < m) edist += (m - j);
if (edist < minDist) minDist = edist;
return;
}
if (a[i] == b[j]) { // 两个字符匹配
lwstBT(i+1, j+1, edist);
} else { // 两个字符不匹配
lwstBT(i + 1, j, edist + 1); // 删除 a[i] 或者 b[j] 前添加一个字符
lwstBT(i, j + 1, edist + 1); // 删除 b[j] 或者 a[i] 前添加一个字符
lwstBT(i + 1, j + 1, edist + 1); // 将 a[i] 和 b[j] 替换为相同字符
}
}
根据回溯算法的代码实现,我们可以画出递归树,看是否存在重复子问题。如果存在重复子问题,那我们就可以考虑能否用动态规划来解决;如果不存在重复子问题,那回溯就是最好的解决方法。
在递归树中,每个节点代表一个状态,状态包含三个变量 (i, j, edist),其中,edist 表示处理到 a[i] 和 b[j] 时,已经执行的编辑操作的次数。
在递归树中,(i, j) 两个变量重复的节点很多,比如 (3, 2) 和 (2, 3)。对于 (i, j) 相同的节点,我们只需要保留 edist 最小的,继续递归处理就可以了,剩下的节点都可以舍弃。所以,状态就从 (i, j, edist) 变成了 (i, j, min_edist),其中 min_edist 表示处理到 a[i] 和 b[j],已经执行的最少编辑次数。
看到这里,你有没有觉得,这个问题跟上两节讲的动态规划例子非常相似?不过,这个问题的状态转移方式,要比之前两节课中讲到的例子都要复杂很多。上一节我们讲的矩阵最短路径问题中,到达状态 (i, j) 只能通过 (i-1, j) 或 (i, j-1) 两个状态转移过来,而今天这个问题,状态 (i, j) 可能从 (i-1, j),(i, j-1),(i-1, j-1) 三个状态中的任意一个转移过来。
基于刚刚的分析,我们可以尝试着将把状态转移的过程,用公式写出来。这就是我们前面讲的状态转移方程。
如果:a[i]!=b[j],那么:min_edist(i, j) 就等于:
min(min_edist(i-1,j)+1, min_edist(i,j-1)+1, min_edist(i-1,j-1)+1)
如果:a[i]==b[j],那么:min_edist(i, j) 就等于:
min(min_edist(i-1,j)+1, min_edist(i,j-1)+1,min_edist(i-1,j-1))
其中,min 表示求三数中的最小值。
了解了状态与状态之间的递推关系,我们画出一个二维的状态表,按行依次来填充状态表中的每个值。
public int lwstDP(char[] a, int n, char[] b, int m) {
int[][] minDist = new int[n][m];
for (int j = 0; j < m; ++j) { // 初始化第 0 行:a[0..0] 与 b[0..j] 的编辑距离
if (a[0] == b[j]) minDist[0][j] = j;
else if (j != 0) minDist[0][j] = minDist[0][j-1]+1;
else minDist[0][j] = 1;
}
for (int i = 0; i < n; ++i) { // 初始化第 0 列:a[0..i] 与 b[0..0] 的编辑距离
if (a[i] == b[0]) minDist[i][0] = i;
else if (i != 0) minDist[i][0] = minDist[i-1][0]+1;
else minDist[i][0] = 1;
}
for (int i = 1; i < n; ++i) { // 按行填表
for (int j = 1; j < m; ++j) {
if (a[i] == b[j]) minDist[i][j] = min(
minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]);
else minDist[i][j] = min(
minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]+1);
}
}
return minDist[n-1][m-1];
}
private int min(int x, int y, int z) {
int minv = Integer.MAX_VALUE;
if (x < minv) minv = x;
if (y < minv) minv = y;
if (z < minv) minv = z;
return minv;
}
关于复杂算法问题的解决思路,我还有一些经验、小技巧,可以分享给你。
当我们拿到一个问题的时候,我们可以先不思考,计算机会如何实现这个问题,而是单纯考虑“人脑”会如何去解决这个问题。人脑比较倾向于思考具象化的、摸得着看得见的东西,不适合思考过于抽象的问题。所以,我们需要把抽象问题具象化。那如何具象化呢?我们可以实例化几个测试数据,通过人脑去分析具体实例的解,然后总结规律,再尝试套用学过的算法,看是否能够解决。
除此之外,我还有一个非常有效、但也算不上技巧的东西,我也反复强调过,那就是多练。实际上,等你做多了题目之后,自然就会有感觉,看到问题,立马就能想到能否用动态规划解决,然后直接就可以寻找最优子结构,写出动态规划方程,然后将状态转移方程翻译成代码。
如何编程计算最长公共子串长度?
前面我们讲到,最长公共子串作为编辑距离中的一种,只允许增加、删除字符两种编辑操作。从名字上,你可能觉得它看起来跟编辑距离没什么关系。实际上,从本质上来说,它表征的也是两个字符串之间的相似程度。
这个问题的解决思路,跟莱文斯坦距离的解决思路非常相似,也可以用动态规划解决。我刚刚已经详细讲解了莱文斯坦距离的动态规划解决思路,所以,针对这个问题,我直接定义状态,然后写状态转移方程。
每个状态还是包括三个变量 (i, j, max_lcs),max_lcs 表示 a[0…i] 和 b[0…j] 的最长公共子串长度。那 (i, j) 这个状态都是由哪些状态转移过来的呢?
我们先来看回溯的处理思路。我们从 a[0] 和 b[0] 开始,依次考察两个字符串中的字符是否匹配。
如果 a[i] 与 b[j] 互相匹配,我们将最大公共子串长度加一,并且继续考察 a[i+1] 和 b[j+1]。
如果 a[i] 与 b[j] 不匹配,最长公共子串长度不变,这个时候,有两个不同的决策路线:
删除 a[i],或者在 b[j] 前面加上一个字符 a[i],然后继续考察 a[i+1] 和 b[j];
删除 b[j],或者在 a[i] 前面加上一个字符 b[j],然后继续考察 a[i] 和 b[j+1]。
反过来也就是说,如果我们要求 a[0…i] 和 b[0…j] 的最长公共长度 max_lcs(i, j),我们只有可能通过下面三个状态转移过来:
(i-1, j-1, max_lcs),其中 max_lcs 表示 a[0…i-1] 和 b[0…j-1] 的最长公共子串长度;
(i-1, j, max_lcs),其中 max_lcs 表示 a[0…i-1] 和 b[0…j] 的最长公共子串长度;
(i, j-1, max_lcs),其中 max_lcs 表示 a[0…i] 和 b[0…j-1] 的最长公共子串长度。
如果我们把这个转移过程,用状态转移方程写出来,就是下面这个样子:
如果:a[i]==b[j],那么:max_lcs(i, j) 就等于:
max(max_lcs(i-1,j-1)+1, max_lcs(i-1, j), max_lcs(i, j-1));
如果:a[i]!=b[j],那么:max_lcs(i, j) 就等于:
max(max_lcs(i-1,j-1), max_lcs(i-1, j), max_lcs(i, j-1));
其中 max 表示求三数中的最大值。
public int lcs(char[] a, int n, char[] b, int m) {
int[][] maxlcs = new int[n][m];
for (int j = 0; j < m; ++j) {// 初始化第 0 行:a[0..0] 与 b[0..j] 的 maxlcs
if (a[0] == b[j]) maxlcs[0][j] = 1;
else if (j != 0) maxlcs[0][j] = maxlcs[0][j-1];
else maxlcs[0][j] = 0;
}
for (int i = 0; i < n; ++i) {// 初始化第 0 列:a[0..i] 与 b[0..0] 的 maxlcs
if (a[i] == b[0]) maxlcs[i][0] = 1;
else if (i != 0) maxlcs[i][0] = maxlcs[i-1][0];
else maxlcs[i][0] = 0;
}
for (int i = 1; i < n; ++i) { // 填表
for (int j = 1; j < m; ++j) {
if (a[i] == b[j]) maxlcs[i][j] = max(
maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]+1);
else maxlcs[i][j] = max(
maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]);
}
}
return maxlcs[n-1][m-1];
}
private int max(int x, int y, int z) {
int maxv = Integer.MIN_VALUE;
if (x > maxv) maxv = x;
if (y > maxv) maxv = y;
if (z > maxv) maxv = z;
return maxv;
}
Reference
极客时间:王争-数据结构与算法之美,覃超-算法面试通关40讲