散列表也叫哈希表,它是数组的一种扩展,由数组演化而来。
散列思想
比如运动会上,运动员都有编号,现在要编程实现通过编号快速找到对应的选手信息,我们不能直接把编号作为数组下标,但我们可以截取参赛编号的后两位作为数组下标,来存取选手信息数据。当通过参赛编号查询选手信息的时候,我们用同样的方法,取参赛编号的后两位,作为数组下标,来读取数组中的数据。
参赛选手的编号我们叫作键(key)或者关键字。我们用它来标识一个选手。我们把参赛编号转化为数组下标的映射方法就叫作散列函数(或“Hash 函数”“哈希函数”),而散列函数计算得到的值就叫作散列值(或“Hash 值”“哈希值”)。
散列表用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) O(1) 的特性。我们通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,我们用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。
散列函数
散列函数,顾名思义,它是一个函数。我们可以把它定义成hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。
散列函数设计的基本要求:
- 散列函数计算得到的散列值是一个非负整数;
- 如果 key1 = key2,那 hash(key1) == hash(key2);
- 如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。
在真实的情况下,要想找到一个不同的 key 对应的散列值都不一样的散列函数,几乎是不可能的。即便像业界著名的MD5、SHA、CRC等哈希算法,也无法完全避免这种散列冲突。而且,因为数组的存储空间有限,也会加大散列冲突的概率。
解决散列冲突
1.开放寻址法
开放寻址法的核心思想是,如果出现了散列冲突,我们就重新探测一个空闲位置,将其插入。
线性探测(Linear Probing)
从图中可以看出,散列表的大小为 10,在元素 x 插入散列表之前,已经 6 个元素插入到散列表中。x 经过 Hash 算法之后,被散列到位置下标为 7 的位置,但是这个位置已经有数据了,所以就产生了冲突。于是我们就顺序地往后一个一个找,看有没有空闲的位置,遍历到尾部都没有找到空闲的位置,于是我们再从表头开始找,直到找到空闲位置 2,于是将其插入到这个位置。
二次探测(Quadratic probing)
线性探测很像,线性探测每次探测的步长是 1,那它探测的下标序列就是 hash(key)+0 ,hash(key)+1 ,hash(key)+2 ……而二次探测探测的步长就变成了原来的“二次方”,也就是说,它探测的下标序列就是 hash(key)+0 ,hash(key)+1^{2},hash(key)+2^{2} ……
双重散列(Double hashing)
使用一组散列函数 hash1(key),hash2(key),hash3(key)……我们先用第一个散列函数,如果计算得到的存储位置已经被占用,再用第二个散列函数,依次类推,直到找到空闲的存储位置。
不管采用哪种探测方法,当散列表中空闲位置不多的时候,散列冲突的概率就会大大提高。为了尽可能保证散列表的操作效率,一般情况下,我们会尽可能保证散列表中有一定比例的空闲槽位。我们用装载因子(load factor)来表示空位的多少。
散列表的装载因子=填入表中的元素个数/散列表的长度散列表的装载因子=填入表中的元素个数/散列表的长度
装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。
扩容
针对散列表,当装载因子过大时,我们也可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。假设每次扩容我们都申请一个原来散列表大小两倍的空间。如果原来散列表的装载因子是 0.8,那经过扩容之后,新散列表的装载因子就下降为原来的一半,变成了 0.4。
针对散列表的扩容,数据搬移操作要复杂很多。因为散列表的大小变了,数据的存储位置也变了,所以我们需要通过散列函数重新计算每个数据的存储位置。
为了解决一次性扩容耗时过多的情况,我们可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。
当有新数据要插入时,我们将新数据插入新散列表中,并且从老的散列表中拿出一个数据放入到新散列表。每次插入一个数据到散列表,我们都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。
工业应用
ThreadLocalMap
当数据量比较小、装载因子小的时候,适合采用开放寻址法。
2.链表法
链表法是一种更加常用的散列冲突解决办法,相比开放寻址法,它要简单很多。我们来看这个图,在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。
当插入的时候,我们只需要通过散列函数计算出对应的散列槽位,将其插入到对应链表中即可,所以插入的时间复杂度是 O(1) 。当查找、删除一个元素时,我们同样通过散列函数计算出对应的槽,然后遍历链表查找或者删除。
我们对链表法稍加改造,可以实现一个更加高效的散列表。那就是,我们将链表法中的链表改造为其他高效的动态数据结构,比如跳表、红黑树。这样,即便出现散列冲突,极端情况下,所有的数据都散列到同一个桶内,那最终退化成的散列表的查找时间也只不过是 O(\log n) 。
基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。
工业应用
HashMap
- 初始大小
HashMap 默认的初始大小是 16,当然这个默认值是可以设置的,如果事先知道大概的数据量有多大,可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高 HashMap 的性能。
- 装载因子和动态扩容
最大装载因子默认是 0.75,当 HashMap 中元素个数超过 0.75*capacity(capacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来的两倍大小。
- 散列冲突解决方法
HashMap 底层采用链表法来解决冲突。即使负载因子和散列函数设计得再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响 HashMap 的性能。
于是,在 JDK1.8 版本中,为了对 HashMap 做进一步优化,我们引入了红黑树。而当链表长度太长(默认超过 8)时,链表就转换为红黑树。我们可以利用红黑树快速增删改查的特点,提高 HashMap 的性能。当红黑树结点个数少于 8 个的时候,又会将红黑树转化为链表。因为在数据量较小的情况下,红黑树要维护平衡,比起链表来,性能上的优势并不明显。
-
散列函数
int hash(Object key) {
int h = key.hashCode();
return (h ^ (h >>> 16)) & (capitity -1); //capicity 表示散列表的大小
}
其中,hashCode() 返回的是 Java 对象的 hash code。不同的类hashCode() 不一样,可以重写。下面是String类型的对象的 hashCode() 就是下面这样:
public int hashCode() {
int var1 = this.hash;
if(var1 == 0 && this.value.length > 0) {
char[] var2 = this.value;
for(int var3 = 0; var3 < this.value.length; ++var3) {
var1 = 31 * var1 + var2[var3];
}
this.hash = var1;
}
return var1;
}
进一步优化
如果我们采用下面的结构会进一步降低操作的时间复杂度
我们使用双向链表存储数据,链表中的每个结点处理存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段 hnext。
因为我们的散列表是通过链表法解决散列冲突的,所以每个结点会在两条链中。一个链是刚刚我们提到的双向链表(灰线),另一个链是散列表中的拉链(黑线)。前驱和后继指针是为了将结点串在双向链表中,hnext 指针是为了将结点串在散列表的拉链中。
首先,我们来看如何查找一个数据。我们前面讲过,散列表中查找数据的时间复杂度接近 O(1) ,所以通过散列表,我们可以很快地在缓存中找到一个数据。当找到数据之后,我们还需要将它移动到双向链表的尾部。
其次,我们来看如何删除一个数据。我们需要找到数据所在的结点,然后将结点删除。借助散列表,我们可以在 O(1) 时间复杂度里找到要删除的结点。因为我们的链表是双向链表,双向链表可以通过前驱指针 O(1) 时间复杂度获取前驱结点,所以在双向链表中,删除结点只需要 O(1) 的时间复杂度。
最后,我们来看如何添加一个数据。添加数据到缓存稍微有点麻烦,我们需要先看这个数据是否已经在缓存中。如果已经在其中,需要将其移动到双向链表的尾部;如果不在其中,还要看缓存有没有满。如果满了,则将双向链表头部的结点删除,然后再将数据放到链表的尾部;如果没有满,就直接将数据放到链表的尾部。
应用
布隆过滤器(Bloom Filter)。
在讲布隆过滤器前,我要先讲一下另一种存储结构,位图(BitMap)。因为,布隆过滤器本身就是基于位图的,是对位图的一种改进。
我们先来看一个跟开篇的问题非常类似,但稍微简单的问题。我们有 1 千万个整数,整数的范围在 1 到 1 亿之间。如何快速查找某个整数是否在这 1 千万个整数中呢?
当然,这个问题还是可以用散列表来解决。不过,我们可以使用一种比较“特殊”的散列表,那就是位图。我们申请一个大小为 1 亿、数据类型为布尔类型(true 或者 false)的数组。我们将这 1 千万个整数作为数组下标,将对应的数组值设置成 true。比如,整数 5 对应下标为 5 的数组值设置为 true,也就是 array[5]=true。
当我们查询某个整数 K 是否在这 1 千万个整数中的时候,我们只需要将对应的数组值 array[K] 取出来,看是否等于 true。如果等于 true,那说明 1 千万整数中包含这个整数 K;相反,就表示不包含这个整数 K。
不过,很多语言中提供的布尔类型,大小是 1 个字节的,并不能节省太多内存空间。实际上,表示 true 和 false 两个值,我们只需要用一个二进制位(bit)就可以了。那如何通过编程语言,来表示一个二进制位呢?
这里就要用到位运算了。我们可以借助编程语言中提供的数据类型,比如 int、long、char 等类型,通过位运算,用其中的某个位表示某个数字。
LRU缓存淘汰算法优化
Redis中有序集合的操作(将双向链表换成跳表)
Java LinkedHashMap
LinkedHashMap 是通过双向链表和散列表这两种数据结构组合实现的。LinkedHashMap 中的“Linked”实际上是指的是双向链表,并非指用链表法解决散列冲突。